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Abstract
We give a description of the ideal plasma flow, which is governed by an
exact partially invariant solution of the magnetohydrodynamics equations. The
solution generalizes known one-dimensional flow with spherical waves. The
generalization consists in addition of the special tangent vector components
of the velocity and the magnetic field at any plasma particle. In the special
case of zeroth tangential component the solution coincides with the classical
one-dimensional one. This paper describes a three-dimensional picture of the
plasma flow, governed by the obtained solution.

PACS number: 52.30.Cv
Mathematics Subject Classification: 76W05, 76M60, 35C05

1. Introduction

This paper describes a partially invariant solution of the ideal magnetohydrodynamics
equations. In some sense the solution under consideration generalizes the classical one-
dimensional plasma flow with spherical waves. The classical solution determines a flow from
a spherical source along the radius vector of each particle with a radial magnetic field. In the
classical approach all functions are assumed to depend only on time and distance from the
origin. In particular, this well-known solution could be used for modelling solar wind [1, 2].
Both, the classical one-dimensional solution and our generalized solution are generated by the
group O(3) of rotations admissible by the equations of ideal magnetohydrodynamics. The
former solution is a singular invariant [3] with respect to O(3) whereas the latter is a partially
invariant one. We will demonstrate that the generalized solution describes a more complicated
and interesting picture of this motion than the one-dimensional flow, which also exhibits some
features of the classical solution.
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The construction of our generalized solution is based on the following assumptions.

• The spheres of constant radius r = const are level surfaces of the solution, i.e. all invariant
functions are constant on each level surface at fixed moment of time.

• The absolute values of normal and tangential vectors to the level surface components of
the velocity and magnetic field are invariant functions. We also assume that the pressure
and density of fluid are invariant functions. Thus, each quantity depends only on time t
and distance r to the origin.

• The rotation angles of the velocity and magnetic field vectors about the normal to the level
surface’s vector are non-invariant functions. In other words they depend on all variables
t, r, θ, ϕ (in the spherical frame of reference).

Thus, the generalization of the classical solution is achieved by permitting plasma motion and
the magnetic field to spread in the direction tangential to spheres r = const. The investigation
of the system of differential equations, which was obtained under these assumptions, was
carried out in [14]. It was shown that the solution is non-trivial only when the velocity and
magnetic field vectors have the same angle between their tangential to spheres r = const
components and meridians on the spheres. In other words, the radius vector of any particle
is coplanar to its velocity and magnetic field vectors. The non-invariant function ω, which
is the angle between the velocity and the meridional direction, changes from one particle on
the level surface to another. The solution reduces to the classical one-dimensional one in the
particular case when the tangential components of vectors vanish.

The investigation of the described solution is based on the examination of the over-
determined system for function ω. It was proved that the solution reduces the original
(1 + 3)-dimensional equations of ideal magnetohydrodynamics to an involutive system of
partially differential equations with two independent variables t and r. Also, the solution
involves a finite (non-differential) relation, which contains an arbitrary function and serves for
the determination of the non-invariant function ω.

The analysis of the plasma motion, governed by the obtained solution, reveals the
following characteristic properties:

• The trajectory of each particle as well as magnetic force lines that pass through the particle
are flat curves belonging to the same plane. Each plane passes through the origin; its
orientation is determined by traces of the vector fields on some level surface.

• The level surfaces r = const are material, i.e. consist of the same particles for all moments
of time.

• The solution is determined not in the whole three-dimensional space.

The latter property is a consequence of the well-known fact that the continuous tangent vector
field on the sphere in odd-dimensional space does not exist. For proofs of the solution’s
properties and details we refer the reader to the paper [15].

The description of the plasma motion is performed in two steps. The first step is to solve
the invariant system of partially differential equations with two independent variables with
some initial data. Its solutions define the shape of the trajectories and magnetic force lines as
well as dependence of the thermodynamical functions on time t and radial coordinate r. The
second step is substituting invariant functions into the implicit finite equation for the function
ω. Its solution defines ω(t, r, θ, ϕ) providing the position and orientation of the trajectories
and magnetic field lines in the three-dimensional space. This gives a complete picture of
plasma motion, governed by this solution.

At first, the solution of the observed type was constructed for the ideal gas dynamics
in [4]. Investigation of the particular classes of solutions (self-similar, stationary, projective-
invariant) to the gas dynamics equations was carried out in [5, 6]. In all these works it was
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shown that the solution is defined only outside of the sphere r = r∗, where the boundary is
observed as a source or drain of fluid. In the stationary solution the boundary is unmovable,
and in the non-stationary solutions the boundary r∗ moves as time grows.

The generalized one-dimensional solution with spherical waves is usually referred to as
‘the singular vortex’. This name was first used in [4] for the solution of this type with the initial
data, continuous on the sphere r = r0 without poles. Later on this name became applicable to
all class of observed solutions. Another name in use is ‘Ovsiannikov’s vortex’ according to
the name of the author of the pioneering work [4].

The partially invariant solution with respect to the group O(3) of rotations to the equations
of incompressible and compressible ideal fluid was also observed in [7, 8]. It is known that
the analogous solution for the Navier–Stokes equations is reducible to the classical one-
dimensional one [9].

In this work a geometrical interpretation of the solutions of the implicit equation for the
non-invariant function ω is proposed. This equation contains an arbitrary function of one
argument. It is shown that this function defines some curve γ on each sphere r = const. At
each section r = r0 the solution ω = ω(t, r0, θ, ϕ) is determined only inside the stripe on the
sphere, bounded by equidistants to the curve γ . The width of the stripe is determined from the
solution of the invariant subsystem and depends on t and r. The boundary of the stripe could
have a singularity of the ‘dovetail’ type. In this case it is impossible to determine a solution,
continuous over the dovetail. The criterion of the absence of singularities of the boundaries
of the stripe in terms of geodesic curvature of γ is found.

The geometrical interpretation allows the construction of a picture of plasma motion as a
whole. It is demonstrated by an example of stationary plasma flow with a constant density. In
the stationary solution the magnetic field is collinear to the velocity; therefore, the streamlines
coincide with the magnetic force lines. The flow in the example is generated by a spherical
source of plasma. Each particle moves over the same flat trajectory; however, the orientation
of each plane depends on the initial position of the particle. The flow tends to the radial one
at the infinite distance from the source. All particles approach the surface formed by the ray,
which origins at the source and slides along the curve γ on the sphere.

2. Preliminary information

The non-stationary motion of an infinitely conducting plasma is described by the following
system of equations:

Dρ + ρ div u = 0,

D u + ρ−1∇p + ρ−1H × rot H = 0,

Dp + A(p, ρ) div u = 0,

D H + H div u − (H · ∇) u = 0,

div H = 0,D = ∂t + u · ∇.

(2.1)

Here u is the velocity vector, p is the pressure, ρ is the density and H is the magnetic field vector.
All functions depend on time t and coordinates x = (x, y, z). The function A(p, ρ) = ρc2

(c = √
∂p/∂ρ is a thermodynamical speed of sound) is determined by the plasma state

equation p = f (ρ, S), where S denotes the entropy. For example, the state equation of the
polytropic gas is p = Sρκ where κ is a polytropic exponent. The corresponding function A is
A(p, ρ) = κp. For known velocity and magnetic vector fields one can find the electric field
E and the electric current density j by E = −u × H and j = rot H.
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Figure 1. The decomposition of the velocity vector u and magnetic field vector H according to
the spherical frame of reference. The vectors are characterized by their normal and tangential
to spheres r = const components and by angles between the tangential components and the
meridional direction.

The complete group of transformations admitted by system (2.1) was calculated in [10]
(see also [11]). It has a subgroup O(3) of simultaneous rotations in the spaces R

3(x), R
3(u)

and R
3(H). The classical one-dimensional solution with spherical waves, which is symmetric

with respect to the group O(3), has a representation

u = U(t, r)x, H = H(t, r)x, ρ = ρ(t, r), p = p(t, r). (2.2)

Here x is a radius vector of a plasma particle, and r =
√

x2 + y2 + z2. Functions U,H, ρ and
p are determined from the involutive system of differential equations with two independent
variables. From the group-theoretical point of view [3] solution (2.2) is a singular invariant
solution with respect to the group O(3). Another interpretation of solution (2.2) in terms of
weak transversality is given in papers [12, 13]. However, the admissible group O(3) allows
the construction of another type of solution, namely, a partially invariant one.

In the space of independent variables R
3(x, y, z) we introduce a spherical frame of

reference (r, θ, ϕ) according to

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ. (2.3)

An arbitrary vector a = (u, v,w) has the following decomposition in the above spherical
frame:

ur = u sin θ cos ϕ + v sin θ sin ϕ + w cos θ,

uθ = u cos θ cos ϕ + v cos θ sin ϕ − w sin θ,

uϕ = −u sin ϕ + v cos ϕ.

(2.4)

To denote the components of velocity and magnetic field vectors we use the following
individual notation:

vr = U, vθ = M cos �, vϕ = M sin �;
Hr = H, Hθ = N cos 	, Hϕ = N sin 	.

(2.5)

Here U and H are radial components of vectors u and H correspondingly. Functions M and
N determine the tangential to spheres r = const components of the vectors. Notation � and
	 are used for the angles between the vectors u, H and the meridional direction on the sphere
(see figure 1). In these notation the invariants of the group O(3) can be written as

t, r, U, M, H, N, � − 	, p, ρ. (2.6)

According to the algorithm [3] the representation of the partially invariant solution has the
following form:

U = U(t, r), M = M(t, r), H = H(t, r), N = N(t, r),

	 = φ(t, r) + ω(t, r, θ, ϕ), � = ω(t, r, θ, ϕ), p = p(t, r), ρ = ρ(t, r).
(2.7)
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Representation (2.7) involves the invariant functions U,M,H,N, ρ and p, which depend only
on the variables t and r, and a non-invariant function ω, which depends on all independent
variables. In the case M = N = 0 solution (2.7) coincides with the classical solution (2.2). In
comparison with the classical one-dimensional solution, representation (2.7) has a non-zero
tangential to the spheres r = const components of the vectors u and H. The thermodynamical
functions, as well as in the classical solution, depend only on t and r.

Substitution of representation (2.7) into (2.1) gives a system of equations for the invariant
functions and an overdetermined system for the non-invariant function ω. The latter system is
to be observed on the solutions of the former. Investigation of compatibility of these systems
was carried out in [14]. At that only the irreducible solutions were taken into account, i.e.
solutions where function ω is determined with functional arbitrariness. In order to describe
the resulting system of the equations it is convenient to introduce the following notations:

M1 = M

r
, H = H0

r2 cos τ
, N1 = rN. (2.8)

Here H0 is an arbitrary constant, and τ ∈ (−π/2, π/2) is some function of t and r. The
following statement was proved in [14].

Theorem 1. The solution to the ideal magnetohydrodynamics equations (2.1) of the form (2.7)
with functional arbitrariness in the determination of the function ω exists only when φ ≡ 0.
At that the velocity and the magnetic field vectors at any particle are coplanar to its radius
vector. The invariant functions are determined from the invariant system of equation

D0M1 +
2

r
UM1 − H0

r4ρ cos τ
N1r = 0,

D0N1 + N1Ur − H0

cos τ
M1r − M1N1 tan τ = 0,

D0p + A(p, ρ)

(
Ur +

2

r
U − M1 tan τ

)
= 0,

D0U +
1

ρ
pr +

N1N1r

r2ρ
− rM2

1 = 0, H0τr = N1 cos τ,

D0ρ + ρ

(
Ur +

2

r
U − M1 tan τ

)
= 0, D0τ = M1,

D0 = ∂t + U∂r.

(2.9)

The non-invariant function ω is defined by the following implicit equation:

F(η, ζ ) = 0. (2.10)

Here F is an arbitrary smooth function of the following arguments:

η = cos θ sin τ − sin θ cos ω cos τ,

ζ = ϕ + arctan
sin ω cos τ

cos θ cos ω cos τ + sin θ sin τ
.

(2.11)

3. The stationary solution

In [15] particular solutions of system (2.9) were constructed and investigated. The symmetry
group of system (2.9) was calculated. It was shown that there exist four sufficiently different
invariant solutions, which reduce system (2.9) to a system of ordinary differential equations.
Namely, these are stationary, self-similar, homogeneous and logarithmic solutions. The
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corresponding system of equations was analysed. In this work we restrict ourselves to the
case of the stationary solution. However, the general properties of plasma motion are similar
to the other subclasses of solutions.

It was shown that in the stationary solution the vectors u and H are collinear, i.e. the
streamlines coincide with the magnetic force lines. The description of the solution is easily
performed with the aid of generalized potential σ introduced by the formula

τ = 2 arctan

[
tanh

(
1

2
σ

)]
. (3.1)

In terms of σ the expressions for the sought functions have the following form:

M1 = 1 + H 2
0 σ ′

r2
, N1 = H0σ

′, ρ = σ ′

1 + H 2
0 σ ′ , U = (1 + H 2

0 σ ′)
σ ′

cosh σ

r2
.

(3.2)

We may determine σ from the implicit equation

(
1 + H 2

0 σ ′

σ ′

)2
cosh2 σ

r4
+

2κS0

κ − 1

(
σ ′

1 + H 2
0 σ ′

)κ−1

+

(
1 + H 2

0 σ ′)2

r2
= b2. (3.3)

Here κ is an adiabatic exponent of fluid. Representation (3.2) does not work for incompressible
plasma flows. In the case of constant density it is convenient to use the following
representations in terms of an invariant function τ :

M1 = H 2
0 τ ′

r2 cos τ
, N1 = H0τ

′

cos τ
, U = H 2

0

r2 cos τ
, ρ = 1

H 2
0

. (3.4)

For a flow with a constant pressure the function τ(r) must satisfy the following equation:

τ ′2 = r2 cos2 τ − r−2. (3.5)

Note that solutions (3.4) and (3.5) belong to the class of incompressible stationary
plasma motions investigated in the paper [16]. The infinite-dimensional pseudogroup of
transformations obtained in this work could be used to generalize solutions (3.4) and (3.5).

The further description of the generalized one-dimensional plasma flow with spherical
waves will be given on an example of particular solutions (3.4) and (3.5). This case allows
us to demonstrate the geometric features of the plasma flow in the three-dimensional space
without the necessity to go into the details of investigation of the invariant system (2.9).

Let us outline the main properties of solutions (3.4) and (3.5) as proved in [15]. The
solution is determined in the stripe −π/2 < τ < π/2 provided that r2 cos τ � 1. The curve
r2 cos τ = 1 is a limit line for solution (3.4), which means that the solution cannot be extended
behind this curve.

Equation (3.5) has two symmetrical families of the solutions: increasing and decreasing
ones. They correspond to two different choices of the sign of the derivative τ ′ after taking
the square root of both sides of equation (3.5). According to definition (2.5) the tangent
components M1 and N1 have to be positive. This is only possible for increasing solutions τ(r)

of equation (3.5). The picture of typical increasing integral curves of this equation is shown
in figure 2. The horizontal lines show the asymptotes τ = ±π/2. It was proved that the
integral curves asymptotically approach the limit curve r2 cos τ = 1 whenever r → ∞ (the
limit curve is a dashed curve in figure 2). This means that at a large distance from the origin
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Figure 2. The typical set of increasing integral curves of equation (3.5). The dashed curve is a
limit line r2 cos τ = 1.

0-1 1 2 3 4 5

1

2

Figure 3. Typical magnetic field lines in the stationary solutions (3.4) and (3.5). The initial data
are τ(r0) = ± arccos(1/r2

0 ) with r0 = 1.4. The solid curve corresponds to the negative sign of
τ(r0). The curves will be referred to as ‘long’ and ‘short’ magnetic curves. At r → ∞ both long
and short magnetic field curves approach the ray τ = π/2.

the velocity and the magnetic vector fields are close to the radial ones:

U ∼ H 2
0 , M ∼ 2H 2

0

r2
, H ∼ H0, N ∼ 2H0

r2
.

The condition of non-negativity on the right-hand side of equation (3.5) gives a restriction
on the domain of the solution. It follows from figure 2 that the solution cannot be extended
up to the origin r = 0. Hence, the solution is determined only outside some spherical source
or drain of the plasma. The radius of this source is defined by the minimal value of the
independent variable r along the chosen integral curve of equation (3.5).

The typical magnetic field lines (or streamlines) in the stationary solution for the in-
compressible plasma are shown in figure 3. The two magnetic lines, which are determined by
two different integral curves of equation (3.5), are shown. Both integral curves originate on the
limit circle r = 1.4 with symmetrical initial data τ(1.4) = ± arccos(1/1.96) ≈ ±1.04. The
solid curve corresponds to the negative initial value of τ . Asymptotic behaviour at r → ∞ is
the same for all magnetic lines.

The choice of an integral curve of equation (3.5) (or (3.3)) defines all the sought functions
according to formula (3.4) (or (3.2)). All magnetic force lines, which begin on the same
sphere, have the same shape. However, the orientation of the magnetic field lines in the
three-dimensional space is determined by the direction of the magnetic vector field on
some initial sphere. This directional field is determined by the solution of the implicit
equation (2.10) for the function ω. Thus, the complete picture of the plasma motion is non-
trivial. In the following sections we give a geometrical interpretation of the solution of an
implicit equation (2.10) and an algorithm to describe the plasma motion as a whole.
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Figure 4. The definition of the Oξ1ξ2ξ3 Cartesian frame of reference.

4. The initial vector field on the sphere

In order to give a geometrical interpretation of the solution ω = ω(t, r, θ, ϕ) for the implicit
equation (2.10), the following auxiliary construction is introduced. Let us observe an arbitrary
point M on the unit sphere, defined by angles (θ, ϕ) in the spherical frame of reference (2.3).

Suppose that function ω is defined at M. Let us introduce an auxiliary Cartesian frame of
reference Oξ1ξ2ξ3, which relates to M in the following way. The axis Oξ3 passes through the
origin O and point M. The axis Oξ1 is orthogonal to the axis Oξ3 in the origin O and belongs
to the plane, which is determined by the angle ω(M) as shown in figure 4. The axis Oξ2 is
orthogonal to Oξ1 and Oξ3 such that the frame Oξ1ξ2ξ3 has a positive orientation.

A transformation from the frame Oxyz to the frame Oξ1ξ2ξ3 can be performed by the
subsequent action of the following rotations:

• about the Oz-axis on the angle ϕ (precession);
• about the Oξ2-axis on the angle θ (nutation) and
• about the Oξ3-axis on the angle ω (proper rotation).

The coordinates of any point on a sphere could be expressed in both Oxyz and Oξ1ξ2ξ3 frames
of reference. Let us denote the coordinate triple in the frame Oxyz as r; the coordinate triple
in the frame Oξ1ξ2ξ3 as R. The relation between triples r and R is given by

R = �12(ω)�13(θ)�12(ϕ)r,

r = �12(−ϕ)�13(−θ)�12(−ω)R,
(4.1)

where |r| = |R| = 1 and �ij are the orthogonal operators

�12(α) =

 cos α sin α 0

− sin α cos α 0
0 0 1


 , �13(α) =


cos α 0 − sin α

0 1 0
sin α 0 cos α


 . (4.2)

Note that the coordinate plane Oξ3ξ1 contains both trajectory and magnetic field lines passing
through the point M at the initial time moment t = t0. In the reference frame Oξ1ξ2ξ3 point
M has coordinates (0, 0, 1). The motion of the plasma particle, located at M at t = t0, could
be described by its polar coordinates (r sin ψ, 0, r cos ψ) at t > t0. Here r and ψ are polar
coordinates of the particle in the plane Oξ3ξ1.

Let us observe vector Rτ = (cos τ, 0, sin τ). According to formula (4.1) it has the
following coordinates in the Oxyz frame of reference:

rτ = (a, b, η). (4.3)
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Figure 5. The planar analogue of the construction of theorem 2. For the chosen curve γ there are
two possible solutions ω1 and ω2 at any point inside the stripe between the equidistants γ ±(δ).

Here η is determined by formula (2.11). The values of a and b are

a = cos θ cos τ cos ϕ cos ω + cos ϕ sin θ sin τ − cos τ sin ϕ sin ω,
(4.4)

b = cos θ cos τ sin ϕ cos ω + sin ϕ sin θ sin τ + cos τ cos ϕ sin ω.

With the value ζ from (2.11) the following equalities are correct:

cos ζ = a√
a2 + b2

, sin ζ = b√
a2 + b2

. (4.5)

The key point of our observation is the following interpretation of relations (4.3)–(4.5). We
conclude, that the point rτ belongs to the unit sphere. It raises above the Oxy plane on the
height η. The projection of the point rτ onto the Oxy plane deviates from the Ox axis on the
angle ζ . The obtained values η and ζ are related by equation (2.10).

We shall look at the same result from another point of view. Let relation (2.10) determine
a curve γ on the unit sphere S2. The value η is a height of γ above the plane Oxy and the
value ζ is a deviation angle of the projection of the point onto the Oxy plane from the positive
direction of the Ox axis (see figure 4). For a given point M, which is defined by its spherical
coordinates (θ, ϕ), let us draw a circle S1 on the sphere S2 with the centre M and geodesic
radius π/2 − τ (the value τ is the same for all points of S2). Let Ni , i = 1, . . . , k be the
points of intersection of the curve γ with the circle S1. From the above construction it follows
that the angles between the meridian, which passes through M, and the geodesic curves,
which follow from M to each Nis, define all possible values of the angle ω, which satisfy
relation (2.10).

Theorem 2. Let M be a point on the unit sphere S2 and S1 ⊂ S2 is a circle on the sphere S2

with the centre M and the geodesic radius π/2 − τ . Let relation (2.10) determine the curve
γ ⊂ S2 and Ni, i = 1, . . . , k are the points of intersection of S1 and γ . For each i = 1, . . . , k

the angle between the meridian in the point M and the geodesic of length π/2 − τ , which
passes from M to Ni , determines the solution of the implicit equation (2.10) for function
ω(τ, θ, ϕ). All solutions of equation (2.10) could be determined in this way.

5. Planar analogue

Let us illustrate the statement of theorem 2 in a planar case. A similar construction is
represented in figure 5. An analogue of the sphere S2 is a plane; we have chosen the curve γ

to be a sinusoid. The circle with a centre at point M and radius π/2 − τ has two points N1 and
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Figure 6. The behaviour of the branches of function ω over the dovetail. There are two branches
of ω outside the dovetail in figures (a), (b) and (f); three branches of ω at the borders of the dovetail
in figures (c) and (e); and four branches of solution inside the dovetail in figure (d).

N2 of intersection with the curve γ . Angles between the line segments MNi and the vertical
line (analogue of the meridian) give two possible values for ω. Let us denote as γ ±(δ) the
equidistant curves for γ , which are shifted on the geodesic distance δ from the curve γ . The
sign ‘+’ corresponds to the shift of equidistant to the north; the sign ‘−’ denotes the shift to
the south.

The main features of the dependence of ω(τ, θ, ϕ) defined by theorem 2 are as follows:

• The dependence ω(τ, θ, ϕ) is multiple valued. There is an even number of branches of the
function ω as the circle S1 is not tangent to γ at any point. The odd number of branches
is possible only when there is an odd number of tangency points of S1 and γ .

• The function ω is determined only in the stripe of the geodesic width π − 2τ with the
medial line γ . In the points of equidistants γ ±(π/2 − τ) the segment MN is directed
orthogonal to the equidistants towards the curve γ .

• There could be singularities of the dovetail type on the equidistants γ ±(δ). It is impossible
to choose a branch of function ω(τ, θ, ϕ), which remains continuous when point M moves
across all boundaries of the dovetail. Any branch of function ω is discontinuous over
some boundary of the dovetail.

The latter statement is illustrated in figure 6. Here the curve γ is a sinusoid, the same as in
figure 5. The shift δ of the equidistants γ ±(δ) is large enough to evoke the dovetail overlaps of
the equidistants. Let us choose a point inside the stripe between the sinusoid and equidistant
as in figure 6(a). There are two branches of the solution at this point. Let us move the point
towards the dovetail, figure 6(b). When the point reaches the left boundary of the dovetail the
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new branch of solution appears as depicted in figure 6(c). In the subsequent motion of the
point inside the dovetail the new branch of solution splits into two branches, in other words
there are four branches of the solution inside the dovetail, figure 6(d). On the right-hand side
of the dovetail two ‘old’ branches of the solution stick together, figure 6(e), and disappear
when the point comes out of the dovetail, figure 6(f).

Hence, if the point moves from the left to the right, then the line of discontinuity of the
function ω is the right-hand side of the dovetail. Conversely, if the point moves from the right
to the left, then the line of discontinuity is the left-hand side of the dovetail. In any case, there
should be a line of discontinuity inside the dovetail, which ‘switches’ the branches of solution
from the left-hand side of the dovetail to the branches from the right-hand side.

The only way to prevent the discontinuity is to observe the stripe, which does not have
dovetails on its boundaries. In the next paragraph we determine the width of the stripe, which
guarantees the absence of the dovetails.

6. Criterion of the non-singularity of the initial vector field

Let us find the maximal distance δ, such that the equidistants γ ±(δ) do not have dovetail
singularities. We begin with the planar case.

Theorem 3. Let γ be a smooth planar curve. The equidistants γ ±(δ) are smooth curves as
well if and only if the following inequality holds:

δ < min
x∈γ

R(x). (6.1)

Here R is the radius of curvature of the curve γ .

Proof. Let us introduce a natural parameter s along the curve γ . Let n be a normal vector to
γ . For the points of the equidistant γ +(δ) we have

x+ = x + δn.

The cuspidal points at the ends of the dovetails on the equidistants γ ±(δ) are determined by
the following procedure. Let us draw two geodesic lines orthogonal to the curve γ from two
infinitely near points at γ . The point of intersection of these two geodesics gives the desired
cuspidal point of the equidistant curve. Thus, for the cuspidal points we have

lim
�s→0

(x+(s + �s) − x+(s)) = 0.

Dividing the later equality by �s and passing to a limit at �s → 0 we obtain dx+/ds = 0.
According to the Frenet formulae

ẋ+ = ẋ + δṅ = ẋ − δkẋ = (1 − δk)ẋ = 0,

where upper dot denotes the derivative with respect to the natural parameter s, and k is a
curvature of the curve γ . The latter equality holds only for δ = 1/k = R(x). The equidistants
γ ±(δ) do not have cuspidal points if and only if δ is less than the distance to the nearest
cuspidal point as is stated by inequality (6.1). �

Inequality (6.1) determines the boundaries of the stripe of unique and continuous
determination of ω on the plane. The same assertion is also valid in the spherical case.

Theorem 4. Let γ be a smooth curve on the sphere |x| = R. The equidistants γ ±(δ) are
smooth curves if and only if the following inequality holds:

tan δ < min
x∈γ

R/kg(x), (6.2)

where kg is a geodesic curvature of the curve γ .



7590 S V Golovin

Proof. Let γ be a smooth curve on S2 defined by x = x(s) with natural parameter s, i.e.
|ẋ| = 1. The unit vector ẋ is tangent to the curve γ and orthogonal to the vector x; therefore
ẋ is tangent to the sphere S2. Together with the unit vector b = x × ẋ the three vectors x, ẋ
and b form an orthogonal frame of reference. The equidistant curve γ +(δ) is given by the
parametric equation

x+ = x cos δ + b sin δ. (6.3)

As in the planar case, singularities of the equidistant curve γ +(δ) are specified by the condition
dx+/ds = 0. According to (6.3) this gives

ẋ+ = ẋ cos δ + ḃ sin δ = ẋ cos δ + (x × ẍ) sin δ = 0. (6.4)

Let us multiply equation (6.4) by ẋ. Making the cyclic permutation in the mixed product we
obtain

ẋ · (x × ẍ) = ẍ · (ẋ × x) = −ẍ·b.

The latter gives negative value of projection of acceleration vector ẍ onto the tangent plane to
sphere S2. Indeed, the tangent plane is spanned by linear combinations of vectors ẋ and b.
The acceleration ẍ is orthogonal to the velocity ẋ because s is a natural parameter. Hence, its
projection onto the tangent plane is given by the dot product ẍ·b.

To conclude the proof we shall note that by definition [17] projection of acceleration in
natural parametrization onto the tangent plane is referred to as the geodesic curvature kg of
the curve γ . From (6.4) it follows that

cos δ − kg sin δ = 0. (6.5)

Inequality (6.2) follows from (6.5) and from the obvious observation that the geodesic radius
kg of the curve γ on stretched sphere |x| = R acquires the multiplier 1/R. �

Suppose that the curve γ on the sphere |x| = R is given by its spherical coordinates

γ :

{
θ = θ(s),

ϕ = ϕ(s).

We assume that θ̇2 + sin2 θ ϕ̇2 = 1. The geodesic curvature can be computed by the following
formula

kg = − θ̈

Rϕ̇ sin θ
+

ϕ̇ cos θ

R
. (6.6)

For the case when the curve γ has tangent points with a meridian (i.e. ϕ̇ = 0) one can use an
equivalent formula

kg = R−1 sin θ(−θ̈ ϕ̇ + θ̇ ϕ̈) + R−1 sin2 θ cos θ ϕ̇3 + 2R−1 cos θ θ̇2ϕ̇.

Inequality (6.2) gives a restriction on the value of δ according to the chosen curve γ . This
restriction guarantees that equidistants γ ±(δ) do not have singularities of the dovetail type.
This implies the possibility of choosing the continuous branch of the function ω(τ, θ, ϕ) in
the stripe between equidistants γ ±(δ).

There is another possibility for the non-uniqueness of the function ω on the sphere,
namely, the overlapping of definition domains of the function ω over the pole. This situation
is typical for the case of negative τ, π/2 − τ > π/2. This is demonstrated in figure 7.

In figure 7 the curve γ : θ = π/2 + 1/4 sin 3ϕ and two equidistants γ ± on the sphere r = 1
are shown. Here the minimal geodesic curvature of the curve γ is approximately kg ≈ 2.14,
which is reached at ϕ = π/6 + kπ/3, k ∈ Z. According to formula (6.2) the maximal
stripe, where the function ω is continuously determined, has width 2δ = 0.86 rad = 50.06◦.
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(a) (b) (c) (d)

Figure 7. The overlapping of the domain of function ω over the pole. All curves lie entirely on a
sphere. The middle curve is γ . Two other curves are equidistants γ ±(δ). The value of δ increases
from figure (a) to figure (d). The domain of ω is an area on the sphere between the equidistants.

Figure 8. An example of the vector field, which satisfies equation (2.10). Curve γ : θ =
π/2 + 1/4 sin 3ϕ and its northern equidistant γ +(δ) are shown. One can see the multiple valuedness
of the vector field inside the dovetail.

The equidistants in figure 7(a) have no singularities. As δ grows the dovetails emerge at
the equidistants in figures 7(b), (c). There are two branches of function ω between the
equidistants inside the stripe; four branches inside the dovetails; three branches of function
ω over the borders of the dovetail and one branch of ω over the equidistants γ ± outside the
dovetail. In figures 7(b) and (c) function ω is not determined in the neighbourhood of the
poles. The largest value of δ is shown in figure 7(d). Here the overlapping of the areas of
continuous determination of function ω over the poles takes place. In this case there are six
branches of function ω near the poles of the sphere.

The vector field corresponding to the solution of equation (2.10), for the same curve γ as
in figure 7, is shown in figure 8. We choose the left branch of the function ω inside the stripe
between the equidistants γ ±. One can see the multiple valuedness of the vector field inside
the dovetail. Further we observe the solution only inside the stripe where the function ω is
uniquely determined. This stripe will be referred to as the domain stripe.

7. Construction of the solution as a whole

The results in the previous section allow us to give a description of the generalized one-
dimensional plasma flow with spherical waves as a whole. The results are

• Equation (2.10) defines a curve γ on the sphere. In any section r = const the solution is
determined in the domain stripe of the width π − 2τ with the midline γ .

• For negative τ there is an overlapping of the domain stripe over the poles of the sphere.
These overlapping areas should be excluded from the domain of the solution.

• The domain of the solution in the three-dimensional space is bounded by the following
surfaces
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(a) (b) (c)

Figure 9. Examples of the initial vector field on a sphere. The middle curve γ is the parallel
θ = θ∗ < π/2. The vector field is determined in the stripe between the equidistants γ ± : θ = θ∗∓δ.
Three possibilities are shown: (a) θ∗ > δ; (b) θ∗ = δ and (c) θ∗ < δ.

– Initial spherical source or drain of plasma (if the solution cannot be prolonged up to
the origin).

– The surfaces, which are locus of the magnetic field lines originating at the boundaries
of the domain stripe.
The specified boundaries are fixed in the stationary flow and are material surfaces in
the non-stationary motion.

• In the case when the function τ decreases along the magnetic field line the singularities
on the boundaries of the domain stripe emerge.

For the sake of simplicity let us choose γ to be the parallel θ = θ∗ on the sphere
r = r0. According to formula (6.6) the geodesic curvature radius of such a curve is
Rg = 1/kg = r0| tan θ∗|. The geodesic curvature radius is infinite whenever the parallel
γ coincides with the equator θ = π/2. This means that the conjugated points for the equator
are the poles of the sphere. This is the only case when the shape of the curve γ does not imply
any additional restriction on the initial data domain. The maximal domain stripe of the initial
data could fulfil all the sphere surface excluding the poles. If one chose the curve γ to be
parallel θ = θ∗ < π/2 (or θ = θ∗ > π/2) then according to formula (6.2) the domain stripe
could be located only in the area between the pole θ = 0 (or θ = π ) and another parallel
θ = 2θ∗ (or θ = π − 2θ∗).

Except for the geodesic radius of the curve γ , the domain stripe of the solution is bounded
by its width δ, which is defined by δ = π/2 − τ where τ is taken from the solutions of the
invariant subsystem (2.9). The width δ of the stripe is fixed over each sphere. As before, we
assume the curve γ to be the parallel θ = θ∗. Let us observe three possibilities: (a) θ∗ > δ,
(b) θ∗ = δ and (c) θ∗ < δ. The corresponding diagrams of the tangential component of the
initial vector field are shown in figure 9. In each case the curve γ and two equidistants γ ±(δ)

are shown. In case (a) the domain stripe of the solution does not have any singularities. The
tangential direction field is regular at all points of the domain stripe. Over the equidistants
γ ±(δ) the vector field is orthogonal to the equidistants and directed inside the stripe. In case
(b) the ‘northern’ equidistant turns into the north pole of a sphere. At the north pole the vector
field is multi-valued. Over the rest of the stripe the vector field is regular. Finally, in case (c)
the domain stripe overlaps over the north pole. As before, the vector field is determined in the
stripe between the equidistants with the curve γ inside. Over the equidistants the vector field
is orthogonal to the equidistants. However, over the northern equidistant γ +(δ) the vector field
is directed outwards from the stripe.
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(a) (b) (c)

Figure 10. Typical magnetic field lines of the flow. Each magnetic line has the same shape
depicted in figure 3 by the short (dashed) curve. The direction of each magnetic curve is defined
by the corresponding vector field in figure 9.
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Figure 11. Axial sections of the domains of the flows in figure 10. The shaded region is the
spherical source of plasma. The flow is determined only inside the area bounded by the limiting
magnetic field lines (solid lines in the diagrams).

The next step of motion construction is to choose a solution for the system of equations for
invariant functions (2.9). As an illustration we choose the stationary motion of incompressible
plasma (3.4). Let us choose the same integral curve of equation (3.5) as we used when drawing
figure 3. The initial source of plasma is the sphere r0 = 1.4. Let us observe the branch of
solution, which is determined by the initial data τ0 = τ(1.4) = arccos(1/1.96). It corresponds
to the dashed curve in figure 3.

The picture of motion generated by the described algorithm is shown in figure 10. The
three diagrams in figure 10 correspond to the three possibilities for the vector field in figure 9.
In figure 10(a) the solution does not have singularities. In figure 10(b) the tangential vector
field is multi-valued only at the north pole of the sphere. In figure 10(c) the magnetic force
lines originating at the northern equidistant intersect each other over the north pole. To
avoid the collapse one could slightly narrow the domain stripe by a tiny shift of the northern
boundary inside the domain stripe. The domains of the solutions in three-dimensional space
are axisymmetric in all three cases. Figure 11 shows the axial section of the domains of the
solution.

Figures 12 through 14 demonstrate other possible flow types. In figure 12 the curve γ is
chosen to be the equator of a sphere. Pictures of the flow with the magnetic force lines defined
in figure 3 are shown. In the first case, figure 12(a), the function τ is positive 0 < τ < π/2
along the magnetic line. This means that the definition stripe does not overlap over the
poles of the sphere. In the second case, figure 12(b), the magnetic field lines shown by the
continuous curve on figure 3 are chosen. Function τ changes from some negative value over
the initial sphere r = r0 to the limiting value τ = π/2 at r → ∞. For negative τ the width
π/2 − τ of the domain stripe exceeds π/2; therefore the domain stripe overlaps over the
poles. The corresponding picture of the motion is shown in figure 12(b). In order to prevent
the intersection of the magnetic lines over the poles we have narrowed the domain of the initial
data.
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(a)
(b)

Figure 12. Examples of magnetic field lines of the flow from the spherical source. The curve γ as
the equator θ = π/2. The magnetic field line is (a) short curve; (b) long curve depicted in figure 3.
The sphere is a source of plasma.
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Figure 13. Axial section of the domains of the flows in figure 12. The solutions are determined
outside the shaded region in the area between the limiting magnetic curves. Solid curves are
boundaries of the flow depicted in figure 12(a), the dashed ones bound the flow in figure 12(b).
The solid part of the boundary of the shaded region is a source of plasma.

(a) (b)

Figure 14. Examples of the plasma flow. The curve γ is (a) θ = π/2 + 1/4 sin 3ϕ; (b) θ = 7/8π .
At the infinite distance from the spherical source all particles approach the surface, which is
partially shown in the diagrams.

In both cases the domain of the solution in the three-dimensional space is axisymmetric.
Figure 13 shows the axial section of the domain. In both cases the solution is generated by
the spherical source (it is shaded in the figure). The discharge (or drainage) of plasma takes
place through the segments of the sphere shown by solid curves. The flow in figure 12(a)
corresponds to the domain bounded by solid curves in figure 13. The boundaries of the flow in
figure 12(b) are constructed from the dashed curves in figure 13. The boundaries of the flow
are rigid conducting walls in both cases. The pressure is constant along the rigid boundaries.
Therefore they could also be observed as free surfaces.

It was proved [15] that in the stationary incompressible solution under consideration
function τ has a limiting value π/2 along all integral curves of equation (3.5). At the infinite
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distance from the origin the flow becomes a radial one. This means that sections of the domain
of the solution in three-dimensional space by spheres r = r0 narrow as r0 → ∞. Thus,
at infinity all plasma particles approach the surface formed by the ray, which originates at
the centre of the source and slides along the curve γ . Pictures of the plasma flow, which
correspond to another choice of the curve γ , are shown in figure 14. The fragments of the
limiting surface are also given in these figures.
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